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a  b  s  t  r  a  c  t

We  provide  an  overview  of  latent  variable  methods  used  in  pharmaceutics  and  integrated  with  advanced
characterization  techniques  such  as  vibrational  spectroscopy.  The  basics  of  the  most  common  latent
variable  methods,  principal  component  analysis  (PCA),  principal  component  regression  (PCR)  and  partial
least-squares  (PLS)  regression,  are  presented.  Multiple  linear  regression  (MLR)  and  methods  for  improved
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interpretation,  variable  selection,  classification  and  validation  are  also  briefly  discussed.  Extensive  use  of
the  methods  is  demonstrated  by compilation  of  the  recent  literature.
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. Introduction

Measured data are not the same as information. Therefore an
mportant issue in all empirical sciences, including pharmaceu-
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tical sciences, is how to reveal the relevant information in the
data. Chemometrics can be defined as “information aspects of
chemistry” (Wold and Sjostrom, 1998) where statistical and math-
ematical methods are used (i) to produce “good data”, and, (ii) to

extract relevant information from measured data. The first aim can
be achieved by using design of experiments (DoE) to provide a
small number of information-rich experiments. Multivariate data
analysis can be employed for the second purpose. In addition visu-
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lization of the data represents an important issue. The methods
sed in chemometrics are fully applicable in pharmaceutical sci-
nces. Multivariate projection methods can be used to simplify
omplex pharmaceutical data and thus make the visualization eas-
er. Furthermore they make for example classification of samples
nd prediction of outcome possible.

Instrumentation developed in the field of process analytical
hemistry (PAC) supply data about the state of a process (Callis
t al., 1987). Off-line instrumentation requires manual sampling
nd transport to a laboratory with the analytical instrument. At-line
nstrumentation includes also manual sampling but the analyzer is
ocated close to the process line. On-line instrumentation consists
f automated sampling system in combination with an automated
nalyzer. In-line instrumentation performs the analysis in situ using

 probe located in the process stream. In noninvasive instrumen-
ation the probe does not have a physical contact with the sample.
his represents the most desired situation since sampling problems
re greatly reduced. Vibrational spectroscopy techniques such as
nfrared (IR), near infrared (NIR), and Raman, and imaging tech-
iques are characterization methods that have been applied in
harmaceutical industry to monitor physical and chemical phe-
omena occurring during the processes. These techniques produce
ata with high dimensionality, since each sample is described
ith hundreds or even thousands of variables. Combination of

AC instrumentation and multivariate analysis provides tools for
ffective process monitoring and control enabling detection of
ultivariate relationships between different variables such as raw
aterials, process conditions, and end products. Thus multivariate
ethods can play a critical role in process understanding, multi-

ariate statistical process control (MSPC) (MacGregor and Kourti,
995), fault detection and diagnosis, process control and process
cale-up.

Process analytical technology (PAT) has its roots in PAC (Kourti,
006). The aim of the PAT initiative is to increase process under-
tanding and control and at the same time reduce the uncertainty
nd variation in the quality of the end product (United States
ood and Drug Administration (FDA), 2004). The objective is to
ssure and build in quality throughout manufacturing process, also
eferred as quality by design (QbD), and enable prompt problem
olving if necessary (Yu, 2008). Chemometric techniques, both mul-
ivariate data analysis and DoE, have a central role in PAT initiative.

This tutorial review covers the area of multivariate data analy-
is and theoretical background to the methods is provided. Several
harmaceutical applications employing advanced characterization
echniques in combination with multivariate data analysis are
eported. Some of the recent ones and their corresponding refer-
nces are presented in Table 1. The present paper does not aim at
etailed discussion of the applications, but to show the variabil-

ty of pharmaceutical applications and to give an overview of the
ossibilities that multivariate data analysis method can provide.
ultivariate data analysis has proven to be a powerful tool when

ombined with advanced characterization techniques. Theory of
oE is not included here and literature with references covering

he field of experimental design and optimization can be found else-
here (Box et al., 1978; Gabrielsson et al., 2002; Lundstedt et al.,

998; Mandenius and Brundin, 2008).

. Theory

.1. Background
Models can be seen as tools to describe reality. Empirical mod-
ls based on the experimental data can be estimated and used for
nterpretation and prediction. All models are more or less erro-
eous, since there are always noise and other irrelevant features
al of Pharmaceutics 417 (2011) 280– 290 281

in the data. Experimental error is produced by both known and
unknown disturbing factors that may  confound important effects
wholly or partially. This can be reduced and sometimes almost
eliminated by using DoE and statistical analysis. Confusion of cor-
relation with causation is a common problem in all empirical
researches. Correlation between two variables often occurs because
they are both associated with a third factor meaning that corre-
lation does not automatically imply that the two  variables have
a causal relationship. One famous example of this is the positive
correlation between the number of inhabitants and the number of
storks observed in the German city Oldenburg in the 1930s (Box
et al., 1978). Correlations are necessary for prediction purposes but
should never be interpreted as direct causality. Validation, interpre-
tation and reduction of multivariate regression models estimated
from non-designed collinear data represent other challenges.

2.2. Notation

Generally, bold uppercase characters (e.g. X) represent matri-
ces, bold lowercase characters (e.g. x) represent vectors, and italic
characters (e.g. N) represent scalars. The transpose is indicated by
a superscript T (e.g. XT). The transpose of a column vector is a row
vector and vice versa. Vectors are by default column vectors – a
transposed vector is therefore a row vector. Similarly, the transpose
of a matrix means that the matrix is rearranged by switching rows
and columns. The inverse of a matrix is indicated by a superscript
−1 (e.g. X−1).

2.3. Multiple linear regression (MLR)

DoE represents a special case of predictive modelling. The
objective of predictive modelling is to determine the relationship
between several x-variables (often called independent or explana-
tory variables) and one or more y-variables (dependent or response
variables). This objective can be achieved by means of a model,
where the observed result, i.e. response (y), is described as a func-
tion of the x-variables, usually called factors (x1, x2, . . .,  xN) in DoE.
The noise is left in the residual (ey).

y = f (x1, x2, . . . , xN) + ey (1)

For practical purposes, the function f can usually be approximated
by using polynomial functions. For instance, a model for N non-
interacting x-variables linearly correlated to y can be written as:

y = b0 + b1x1 + b2x2 + · · · + bNxN + ey (2)

where bi (i = 0, 1, 2, . . .,  N) are regression coefficients describing the
effect of each calculated term. Eq. (2) can be written in matrix form:

y = Xb + ey (3)

The parameters b can be estimated by a least squares fit minimizing
the sum of squared residuals. Multiple linear regression (MLR) is
used for estimating the regression vector b. From Eq. (3) we  obtain:

b = (XTX)
−1

XTy (4)

If all the x-variables can be controlled, we can select discrete levels
for each x-variable so as to enforce orthogonality between them
and their derived interactions and squared terms. The matrix XTX
then becomes a diagonal matrix and b is easily calculated.

When the x-variables are not controlled or the number of x-

variables is exceeding the number of experiments, co-linearity
arises between x-variables. In the latter case, the matrix XTX has
no longer full rank implying that the usual inverse of XTX no longer
exists. The same may  happen in the former case even if the number
of experiments is larger than the number of variables. Regression
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Table  1
Pharmaceutical applications where advanced characterization techniques are used in combination with multivariate data analysis methods.

No. Characterization
method

Application MVA method Reference

1 NIR API and excipient content in pharmaceutical
formulations (powders and tablets)

PCA, PLS Sarraguç a and Lopes (2009)

2  NIR API content in intravenous injections PLS Lopez-Arellano et al. (2009)
3  NIR API content in pellets PLS Mantanus et al. (2010a)
4  NIR API content in pellets PCA, PLS Mantanus et al. (2010b)
5  NIR API content in syrups PLS Ziemons et al. (2010)
6 NIR API  content in tablets PLS, PCR Chalus et al. (2005)
7 NIR Calibration transfer for solid formulations PLS Bergman et al. (2006)
8 NIR  Characterization of polymorphs PCA, PLS Blanco et al. (2004)
9  NIR Characterization of polymorphs MCR Blanco et al. (2006)

10  NIR Characterization of powder blending DoE, PLS Shi et al. (2008)
11  NIR Granulation process analysis DoE, PCA, PLS Rantanen et al. (2005)
12 NIR Monitoring of API fermentation and downstream

purification
PCA, PLS, SOMa Lopes et al. (2004)

13  NIR Monitoring of fluidized drying PLS Peinado et al. (2011)
14  NIR Monitoring of moving solids PCA, PLS, SIMCA Andersson et al. (2005)
15 NIR Monitoring of powder mixing PLS Vanarase et al. (2010)
16  NIR Monitoring of powder quality PLS Märk et al. (2010)
17 NIR Quantification of API and excipients in powder

blends
DoE, MLR, PCR, PLS Wu et al. (2009)

18  NIR Quantification of film thickness on pellets PLS Lee et al. (2011)
19  NIR PAT application in powder blending DoE, PCA El-Hagrasy et al. (2006a)
20  NIR PAT application in powder blending PCA, SIMCA El-Hagrasy et al. (2006b)
21 NIR PAT application in powder blending MLR, PCR, PLS El-Hagrasy and Drennen (2006)
22  NIR PAT application in tabletting process PLS Moes et al. (2008)
23 NIR  Pharmaceutical batch process analysis N-way methods Stordrange et al. (2004)
24  NIR Powder flow characterization of pharmaceutical

formulations
PLS Benedetti et al. (2007)

25 NIR Water content in freeze drying PCA, PLS Grohganz et al. (2009)
26  NIR Water content in pellets PLS Mantanus et al. (2009)
27 NIR  imaging Characterization of counterfeit tablets MCR Lopes et al. (2010)
28  NIR imaging Characterization of powder blends PCA, PLS-DA Ma  and Anderson (2008)
29 NIR imaging Estimation of differences in textures of

pharmaceutical tablets
PCA, PLS Svensson et al. (2006)

30  NIR imaging Quantification and distribution of components in
pharmaceutical tablets

CLSb, MCR  Amigo and Ravn (2009)

31  Raman API content in capsules PLS Kim et al. (2007a)
32 Raman API content in liquids PLS Kim et al. (2007b)
33  Raman API content in suspensions PLS Park et al. (2007)
34  Raman API content in tablets PLS, MCR  Fransson et al. (2010)
35  Raman API content in tablets PLS Johansson et al. (2005)
36  Raman Content uniformity of tablets PCA, PLS Wikström et al. (2006)
37 Raman Detection of counterfeit tablets PCA, HCAc de Veij et al. (2007)
38  Raman Identification of tablets SVMd, PLS Roggo et al. (2010)
39 Raman Monitoring of freeze drying DoE, PCA, MCR  De Beer et al. (2007)
40  Raman PAT application in active coating PLS, MCR  Müller et al. (2010)
41  Raman Quantitative analysis of tablets and capsules PLS Johansson et al. (2007)
42  Raman Quantification of polymorphs in powder mixtures PLS, ANNe Braun et al. (2010)
43  Raman Tablet coating thickness TFAf, PCR, PCA Kauffman et al. (2007)
44  Raman Tablet coating thickness and characterization PLS Romero-Torres et al. (2006)
45  Raman Tablet coating variability PLS Romero-Torres et al. (2005)
46  Raman imaging Characterization of tablets PCA, MCR  Zhang et al. (2005)
47  IR Monitoring of crystallization process MSPC, PCA, PLS Pöllänen et al. (2005)
48  IR Permeation of model drugs through membrane and

human skin
TFA Russeau et al. (2009)

49  IR imaging API and excipient content in pharmaceutical
formulations

CLS, PLS Gendrin et al. (2007)

50  IR imaging Qualitative analysis of solid forms PCA Roggo et al. (2005)
51  NIR + Raman API content in wafers PLS Haag et al. (2009)
52 NIR + Raman Monitoring of dehydration behaviour PLS-DA Kogermann et al. (2007)
53  NIR + Raman Monitoring of freeze drying PCA, MCR  De Beer et al. (2009)
54  NIR + Raman + NIR

imaging
Prediction of physical properties of matrix tablets PLS Shah et al. (2007)

55  NIR + IR Four examples from pharmaceutical industry DoE, PCA, PLS, SIMCA Lundstedt-Enkel et al. (2006)
56  NIR + IR New tablet formulation DoE, PCA, PLS Gabrielsson et al. (2006a)
57  NIR + IR Robustness testing in new tablet formulation DoE, PCA, PLS Gabrielsson et al. (2006b)
58  IR + dissolution curves Differentiation of crystalline polymorphs of API PCA Maggio et al. (2009)
59  Raman + X-ray

diffractometry
Solid state analysis PCA Jorgensen et al. (2006)

60  HPLC Characterization of herbal medicine TP Chau et al. (2009)
61  HPLC Chromatographic purity analysis PCA, MSPC Laursen et al. (2010)
62 LC/MS Characterization of impurities in pharmaceuticals MCR Zomer et al. (2005)
63 Laser diffractometry API batch to batch variation PCA Hagsten et al. (2008)
64  Laser diffractometry Dry powder inhaled (DPI) formulations DoE, PCA Guenette et al. (2009)
65 Sieve analysis Characterization of compaction and tablet properties PCA, PLS Haware et al. (2009)
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Table 1 (Continued)

No. Characterization
method

Application MVA  method Reference

66 Spatial filtering (SFT) Fluid bed granulator DoE, PLS Närvänen et al. (2009)
67 Acoustic emission Determination of end-product granule size

distribution
N-way methods Matero et al. (2010)

68  Mass distribution
profiles

Characterization of the performance of nebulizers PCA, O-PLS Shi et al. (2009)

69  Digital images + SEMg Prediction of packing efficiency and different
metrics of flowability

PLS, PCA Sandler and Wilson (2010)

70 Digital images Coating uniformity in immediate release tablets PCA, PLS García-Muñoz and Gierer (2010)
71 Digital images Visual characterization of pharmaceutical solids DoE, PCA, PLS García-Muñoz and Carmody (2010)
72  Digital images Visual characterization of pharmaceutical solids PCA, PLS Laitinen et al. (2004)

a SOM: self organized maps.
b CLS: classical least squares.
c HCA: hierarchical cluster analysis.
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The weight vector wa defines the LV uniquely and any LV method
can be derived from the definition of wa (Box 2 ). Several criteria
are available and used for decomposition of matrices, that is, to
determine the axes for projections (Box 3 ). We  shall discuss some
of these below.

Box 1: Successive orthogonal projections.

(i) Select wa
(ii) Project objects on wa:

ta = Xawa

(iii) Project variable vectors on ta:

pT
a = tT

aXa

tT
ata

(iv) Remove the latent-variable a from Xa, i.e. substitute Xa
d SVM: support vector machines.
e ANN: artificial neural networks.
f TFA: target factor analysis.
g SEM: scanning electron microscope.

oefficients can still be calculated by introducing the so-called gen-
ralized inverse X+:

+ = (XTX)
−1

XT (5)

y introducing the generalized inverse into Eq. (4),  we obtain the
xpression for calculation of the regression vector as:

 = X+y (6)

xcept for cases where x-variables are controlled in designed
xperimentation, measured data in pharmaceutical applications
re typically multivariate and collinear and MLR  cannot be used.
his is a main reason why latent variable regression (LVR) methods
uch as partial least squares (PLS) have become popular. Instead of
sing the original variables in the regression, we calculate a new
et of orthogonal (latent) variables leading to reduced dimension-
lity and perform the least-square estimation based on these latent
ariables.

.4. Latent variable methods

Characterization of pharmaceutical systems using common
nstrumental measurement methods produces multivariate,
ollinear data. Measured variables, which describe partially or
ully the same property of a system, provide similar information
ontent. Collinear variables can be combined and described by
ewer, so-called factors or latent variables (LVs), which describe
he underlying structure in the data. In modelling, the prime aim
s to separate information from noise and find the crucial patterns
n the data. The concept of factors or latent variables was first
pplied in psychology and provided the mathematical foundation
or psychometrics (Horst, 1965, 1992; Thurstone, 1947). Following
he introduction of computers and computerized measurement
echniques, LV methodology has penetrated nearly all areas where
omplex systems are measured and modelled, and it is especially
owerful when huge amounts of data are produced and systematic
pproaches are needed to reveal the information in the data.

.4.1. Geometric presentation of a data matrix and latent variable
rojections

Data, for example acquired spectra, are arranged into a table
matrix) in such a way that each row represents one sample

nd each column one measured variable (e.g., a wavelength). Any
atrix can be presented in two co-existing spaces, variable space

nd object space, which together contain all available information
n a data matrix (Kvalheim, 1988). This is illustrated in Fig. 1. Each
bject (sample) i is described by the same N measured variables
thus forming an object (row) vector, xT
i
. Similarly, each variable j is

described by its values for all the M objects, making up a variable
(column) vector, xj. To visualize the data structure, object vec-
tors can be plotted in variable space, where the number of axes
is equal to the number of variables N. In this way all the informa-
tion in X regarding the relationships (similarities or differences)
between objects can be displayed. Similarly, variable vectors can
be plotted in object space, where the number of axes is equal to the
number of objects M.  In this way the relationships (correlations or
co-variances, depending on pretreatment) between variables can
be quantitatively displayed. Since the object space shows common
variation in a set of variables, it also displays the underlying fac-
tors or LVs. When the number of variables increases, the challenge
is to find low-dimensional, information-rich projections of both
variable and object space since the full spaces cannot be displayed
and comprehended in a simple manner. This task can be achieved
by projecting onto LVs. Different projections can be calculated
using a generalization of the NIPALS algorithm (Box 1 ) (Kvalheim,
1987).

The score vector ta and the loading vector pa represent different
presentations of the same LV, carrying information about samples
in variable space and variables in object space, respectively (Fig. 1).
with Xa − tapT
a .

Repeat (i)–(iv) for a = 1, 2, . . .,  A, where A is the dimension of
the model. X1=X.
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Fig. 1. The two alternative ways to look at a data matrix X and the principle of latent var
the  two spaces (see algorithm in Box 1). Axes or vectors related to objects and variables a
three  objects characterized by two  variables are used.

Box 2: Method overview
PCA/SVD wa = pa/||pa||
PLS wa = ya

Txa/||ya
Txa||

TP wa = b/||b|| (only one component)
PCA, principal component analysis; SVD, singular value decomposition; PLS,
partial least squares; TP, target projection.

Box 3: Decomposition criteria
PCA ⇒ Maximum variance

2
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X
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PLS ⇒ Relevant components
TP ⇒ “Real” factors

.4.2. Principal component analysis (PCA)
The oldest and most common latent variable projection method

s principal component analysis (PCA) (Jackson, 1991; Wold et al.,
987). The data matrix X is decomposed into a number of principal
omponents (PCs) that maximize explained variance in the data on
ach successive component under the constraint of being orthogo-
al to the previous PCs. The result is a bilinear model, a product of
cores T and loadings P matrices:

= TPT + E = t1pT
1 + t2pT

2 + · · · + tApT
A + E (7)

 is an M × N matrix, consisting of M samples (rows) with N mea-
T
ured variables (columns). T is an M × A matrix and P is an A × N

atrix, where A is the number of calculated PCs. T and P consist
f orthogonal and orthonormal vectors, respectively. E is an M × N
atrix containing the residuals, that is, variance not explained by

he PCs. Eq. (7) also shows the latent variable decomposition of X
iable (LV) projections. Three vectors, wa , ta , and pa , are needed to define the LV in
re labelled with ‘o’ and ‘v’, respectively. In order to have a simple illustration, only

as a sum of products of score ta and loading pa vectors; a = 1, 2, . . .,
A. PCA is uniquely defined from the algorithm in Box 1 by using the
constraint that the weights wa are equal to the loadings pa. This is
obtained by iterating steps (i)–(iii) until convergence, reducing the
procedure to the traditional NIPALS algorithm (Horst, 1965; Wold
et al., 1987).

PCA is a data visualization technique. Since each object gets a
score value on each PC, objects can be presented in score plots.
Score plots can reveal patterns, such as clusters, trends and out-
liers, in the data. In the same manner variables can be presented in
loading plots, since each variable gets a loading value on each PC.
Loading plots reveal covariances among variables and can be used
to interpret patterns observed in the score plot. Together scores and
loadings map  the co-variance structure in the data. The maximum
number of PCs is equal to min[M, N], but only the PCs that map
the dominant variation patterns in the data are usually extracted.
Noise is left in the residuals.

2.4.3. Principal component regression (PCR) and partial least
squares (PLS) regression

One of the most common tasks in data analysis is to calculate
a model which shows how one or several response variables, can
be explained by means of a set of predictor variables. If the num-
ber of the x-variables is rather low and the x-variables are almost
linearly independent (as in the case of DoE) and contain little noise
compared to the noise in responses, MLR  works well. In most phar-

maceutical applications, however, the x-variables are correlated.
This is always the case when working with spectral profiles.

A straightforward solution to the problem of collinear x-
variables is to perform the regression using the PC scores, that
is, principal component regression (PCR). This provides orthogonal
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redictor variables which make the calculation of the inverse and
hus the regression vector trivial, i.e. b = (TTT)−1TTy where (TTT)
s a diagonal matrix of dimension A. Furthermore, by leaving out

inor components, PCA provides noise reduction in X and thus the
egression assumption of almost error-free predictor variables is
beyed.

A criticism against PCR is that the major principal components
ay  model variation in the x-variables of little or no relevance to the

-variables. PLS regression was suggested as a modelling technique
o overcome this problem (Geladi and Kowalski, 1986; Wold et al.,
984, 2001). Similar to PCA, PLS calculates a set of LVs leading to
educed dimensionality, but uses another criterion than maximum
ariance for the decomposition step. A normalized weight vector
or PLS is calculated as the covariance between the response y and
he data matrix X:

T
PLS,1 = yTX

∥
∥yTX

∥
∥

(8)

cores and loadings for the PLS components are calculated suc-
essively by projecting the spectral variables X on wPLS,1 and by
rojecting X on the resulting score vectors as shown in Box 1. Each
omponent is checked for predictive power by using some kind of
ross validation (Bro et al., 2008; Filmoser et al., 2009; Smit et al.,
007; Stone, 1974; Wold, 1978). The part of X explained by a pair
f PLS score and loading vectors in each step is removed before the
ext pair is calculated. The PLS decomposition can be written for-
ally the same way as PCA (Eq. (7)) with a minor modification: the

ast PLS loading vector pA has to be substituted by the correspond-
ng PLS weight vector wA (Pell et al., 2007). For PLS, the score vectors
re orthogonal, while the loading vectors are neither orthogonal nor
f unit length. However, since the PLS score vectors are orthogonal,
LS also leads to simple calculations in the inversion step and the
egression vector.

For both PCA and PLS, the decomposition of X can be expressed
s a product of three matrices:

 = URWT (9)

or PCA, R is a diagonal matrix with elements ||ta||, a = 1, 2, . . .,  A,
 is the matrix of normalized scores and W is the matrix of PCA
eights which are identical to the loadings P. This formulation of

CA is often referred to as the singular value decomposition (SVD).
or PLS, R is bidiagonal matrix (Manne, 1987). From the formulation
n Eq. (9),  the generalized inverse for PLS can be expressed in terms
f the original x-variables:

+ = WR−1UT (10)

ince both W and U are orthonormal and the bidiagonal matrix R is
rivial to invert, see e.g. Kvalheim (1990),  the general inverse and
hus the regression coefficients for PLS expressed by the original
-variables can easily be calculated.

PLS regression can also be used as a supervised classification
ethod. The response variable is then a binary vector of zeros

nd ones, describing the class membership for each sample in the
nvestigated groups. The method is called PLS-discriminant analysis
PLS-DA) (Sjöström et al., 1986). Classification using latent variable

ethods is discussed in Section 2.4.6.

.4.4. Methods for improved interpretation
PCR or PLS models can be used to predict the responses from

-variables such as spectral profiles. Unfortunately, whether PCR

r PLS is used for modelling, numerous components are usually
eeded to describe the variation in X. This makes interpretation
f PCR and PLS models difficult since the information about the
esponse is scattered between the components. Target projection
TP) and orthogonal PLS (O-PLS) are methods developed to circum-
al of Pharmaceutics 417 (2011) 280– 290 285

vent this problem. During decomposition of X, O-PLS first models
the information in the x-variables orthogonal to the response, i.e.
the so-called orthogonal components, and then calculate a pre-
dictive PLS component as the last step. TP projects the systematic
information in the x-variables described by a PLS model onto the
response variable to obtain a single latent variable (the target-
projected component). The target-projected component represents
the direction in the multivariate predictive space with strongest
relation to the response for any given latent-variable decompo-
sition (Kvalheim, 1990; Kvalheim and Karstang, 1989). Thus, TP
represents the optimal way of relating a latent variable decom-
position to a known target vector (response variable).

The regression vector b, obtained from the PCR or PLS models,
defines the direction in variable space with strongest relation to the
response. Target-projected scores tTP, proportional to the predicted
response ŷ, and target-projected loadings pTP are obtained by using
the normalized regression vector as weight vector, i.e. wTP = b/||b||
in the algorithm in Box 1.

We can insert the score vector tTP in object space in Fig. 1. Since
this vector is proportional to the vector of predicted responses ŷ and
the TP loadings are the projections of the x-variable vectors onto
this vector, TP loadings represent the features in the x-variables
explaining and predicting the response variable. It follows that the
TP loadings should be optimal for interpretations of the y-related
predictive variation in X, while many researchers wrongly use
regression coefficients for interpretations. However, as discussed
below, the TP loadings may  not be the optimal choice for variable
selection since they may  be dominated by x-variables with high
variance, but comparatively small correlation to the response.

After target projection a PCR or PLS model is reduced to a single-
component TP model:

X = X̂TP + ETP = tTPpT
TP + ETP (11)

Ergon (2005) has developed an approach which in addition to the
predictive y-related component obtained by TP also incorporates
components describing the x-related or y-orthogonal variation in a
PLS model.

The so-called O-PLS method (Trygg and Wold, 2002) represents
another approach to obtain a single predictive latent variable. In
this approach, the weights w1 for the first O-PLS component are
selected as the difference vector (p0 − w0)/||p0 − w0|| where w0 and
p0 are the weights and loadings respectively for the first compo-
nent in a “standard” PLS regression. The y-orthogonal variation is
then extracted as the first (A − 1) O-PLS component by updating
the weight vector as (pa − w0)/||pa − w0|| and using the algorithm
in Box 1. The predictive component A is calculated when either X
is exhausted for orthogonal variation, meaning that (pa − w0) → 0,
or by cross validation in X to obtain the orthogonal components in
X describing systematic variation.

With the same number of PLS components, the TP component is
identical to the predictive component obtained from O-PLS. Thus,
TP and O-PLS represent different algorithms to achieve the same
goal (Kvalheim et al., 2009). A detailed analysis of interpretation
of PLS/TP regression models and thus also the predictive O-PLS
component can be found in a recent paper by Kvalheim (2010).

2.4.5. Variable selection in regression
A typical feature for data obtained from instrumental techniques

(e.g., full spectral profiling) is that the number of objects is often
very small compared to the number of variables (i.e., tables are
“short and fat”). However, many of the variables are actually irrel-

evant as they represent variation not related to the investigated
response. Therefore the number of variables can often be dras-
tically reduced with minor loss of information. The challenge is
to find the most significant variables. Variable selection methods
aim at selecting a smaller panel of variables that are related to the



2 l Journ

r
W
t
2
a
t

p
c
fi
(
m
c
t
h
c
t
i

b
e
r
o
e
m
a
I
s
e
1
m
v
I
n
i
v
s
t
a
c
a
s
b
c
(
(
p
t
u
(
t
x
r

g

2

m
m
p
a
P
o
c
c

86 T. Rajalahti, O.M. Kvalheim / Internationa

esponse variable and thus needed for a good predictive model.
hen a large number of variables are measured it is impossible to

est all the variable combinations in question; for instance, there are
.46 × 1020 (500!/(490!10!)) possible combinations to pick 10 vari-
bles out of 500. Variable selection strategies are therefore needed
o search for appropriate combinations.

Univariate variable selection methods treat each variable (e.g.,
eaks in a spectral profile) independently. Statistical values are
alculated for each variable after testing differences between pro-
les from two sample groups. t-statistics and analysis of variance
ANOVA) are methods often used for this purpose. However, these

ethods do not take into account collinearity in the data and they
annot handle properly the situation with few samples compared
o the number of measured variables. It is relatively easy to get
igh correlation by pure chance and an irrelevant model will be
reated. In addition many of the traditional statistical tests assume
hat the data obey normal distribution, which is not always the case
n real-life applications.

Several multivariate variable selection methods are available
ased on, for example, the co-variances between the response and
ach variable, i.e. the PLS weights (Hoskuldsson, 2001), size of
egression coefficients (Centner et al., 1996), variable importance
n projection (VIP) (Eriksson et al., 2001), interval PLS (Norgaard
t al., 2000), and genetic algorithm (Lavine et al., 2004). All these
ethods have their weaknesses. Co-variance between the response

nd x-variables may  be high because of high variance in x-variables.
f x-variables are standardized to unit variance before regres-
ion, this pitfall is avoided, but this pretreatment procedure may
nhance noise from minor x-variables in the model (Kvalheim,
985). A selection based purely on size of regression coefficients
ay  remove unimportant x-variables, but are also impacted by x-

ariables with high variance, but low correlation with the response.
n addition, multicollinearity between x-variables and variation
ot related to the response (interference, orthogonal variation)

ntroduces problems. VIP is also strongly influenced by orthogonal
ariation and therefore not useful for variable selection in regres-
ion situations. Wiklund et al. (2008) invented the so-called S-plot
o cope with the situation. S-plot is a scatter plot showing covari-
nce and correlation between the scores for the predictive O-PLS
omponent and the spectral variables; the most important vari-
bles should have both high covariance and high correlation to the
core on the predictive component. With many variables, the plot
ecomes crowded. Recently, we developed a visualization method
alled selectivity ratio (SR) for searching for important variables
Rajalahti et al., 2009a).  The ratio between explained and residual
unexplained) variance for each variable in the TP model (or the
redictive O-PLS component) defines an SR for the variable in ques-
ion. The statistical significance of the SR method can be determined
sing e.g. a non-parametric test called the discriminating variable
DIVA) test (Rajalahti et al., 2009b). A nice feature of the SR plot is
hat it looks like a spectrum or chromatogram, but highlights the
-variables with strongest predictive ability and correlation to the
esponse.

A recent tutorial by Andersen and Bro (2010) provides a practical
uide to variable selection in regression-based calibration models.

.4.6. Classification using latent variables
In unsupervised classification no a priori information about class

embership for samples is used in the model building, that is, the
odelling is based on x-variables only. PCA can be used as an unsu-

ervised classification method. Soft independent modelling of class

nalogies (SIMCA) is a supervised classification technique based on
CA since it uses a priori information to split a data set into groups
r classes of similar objects (Wold, 1976). Models for classes are
alculated using the appropriate number of PCs determined from
ross validation (with confidence intervals) and new samples are
al of Pharmaceutics 417 (2011) 280– 290

then projected onto the class models. Samples fitting inside the
boundaries of a certain class can be assigned to that class. Samples
outside confidence intervals are classified as outliers to that class.

PLS can be used as a supervised classification method, PLS dis-
criminant analysis (PLS-DA). For binary classification a response
vector can be created with values 1 or 0 according to the class mem-
bership of the samples and a PLS-DA model can be calculated. When
new samples are measured and predicted using a PLS-DA model
response values close to 1 or 0 should be obtained. For the binary
case with a balanced number of samples in each group, the thresh-
old 0.5 can be used to decide the class membership for the tested
samples. The threshold can of course be varied from case to case
since the optimal choice is problem and sample dependent. Balanc-
ing false positives against false negatives is often used as criterion
for deciding the threshold. In multiclass problems two  strategies
are possible: either a single model, including all groups, or several
binary models, modelling the groups pairwise.

2.5. Data pretreatment

There are many experimental and instrumental effects that
are not related to compositional differences between samples
and thus make comparison of profiles from different samples
difficult. Examples of sources of variation are, for example, sam-
ple collection, sample preparation and instrumental artefacts. In
order to remove these disturbing factors and ensure that col-
lected spectra can be analyzed jointly, proper data pretreatment
is necessary prior to data analysis. Pretreatment has a signifi-
cant effect on the final results and should therefore be carefully
considered. A good pretreatment procedure enhances the chemi-
cal/compositional information content in the data while a wrong
pretreatment procedure destroys it by affecting the compositional
correlation structure. Crucial factors affecting the data analysis
depend on the analytical technique used and there is no single
recipe that can be used for all data. Some relevant references are
mentioned here but a thorough discussion of all possibilities needs
a paper on its own.

Stordrange et al. (2002) compared different recipes for pre-
processing NIR data using standard methods like normalization,
differentiation and multiplicative scatter correction (MSC) (Geladi
et al., 1985). In addition orthogonal signal correction (OSC) (Wold
et al., 1998) and optimized scaling (OS) (Karstang and Manne, 1992)
were tested. Chalus et al. (2005) compared the influence of standard
normal variate (SNV) (Barnes et al., 1989), MSC, second deriva-
tive, and OSC (separately and combined) on NIR data. Luypaert
et al. (2004) applied SNV, detrend correction, offset correction, and
first and second derivation on the removal of spectral variations in
NIR spectroscopy. Artursson et al. (2000) applied various prepro-
cessing methods on data generated by X-ray powder diffraction.
Several wavelet transforms, Fourier transform (FT), Savitzky–Golay
(Savitzky and Golay, 1964), OSC, and combinations of wavelet
transform and OSC, and FT and OSC were studied to enhance the
predictive ability of PLS models.

A pretreatment strategy for mass spectral data that account for
baseline effects, shifts in m/z values (alignment/synchronization
problem), structured noise (heteroscedasticity), and differences in
signal intensities caused by analytical workup and the instrumental
technique (normalization problem) has been developed (Arneberg
et al., 2007). Heteroscedasticity may  seriously influence the corre-
lation structure when samples have to be normalized and should
be minimized before the normalization step (Kvalheim et al., 1994).

Other important pretreatment steps to be considered are smooth-
ing, such as methods for moving average and Savitsky–Golay, use
of 1st and 2nd derivatives to remove background and data reduc-
tion using, for example, binning. Scaling of variables to unit variance
not only enhances small signals at the expense of larger signals, but



l Journ

a
s
i
t

2

m
i
a
(
2
d
s
r
(
c
m
B
r
c
o
t

3

w
n

3

c
p
c
(

m
n
t
i
m
s
p

w
t
t
i
i
u
n
c
s
c

o
e
S
m
p
m
a
o

T. Rajalahti, O.M. Kvalheim / Internationa

lso increases noise (Kvalheim, 1985). A better approach for mass
pectral and chromatographic data is to reduce heteroscedastic-
ty and influence of major signals simultaneously by the nth-root
ransform (Arneberg et al., 2007).

.6. Validation of models

For the case of many more variables than objects, overfitting of
odels represents a serious pitfall (Brereton, 2006). Therefore, it

s mandatory to check models for predictive performance. There
re several options for validating models for predictive ability
Anderssen et al., 2006; Faber and Rajko, 2007; Westerhuis et al.,
008). Cross validation is the preferred method. Different proce-
ures have been developed, but in all algorithms, the data are
omehow partitioned into a training set and a validation set. For
egression models, the validation is performed on the response
with the exception of O-PLS where validation of the orthogonal
omponents has to be performed on X). An overview of some com-
on  methods for cross validation can be found in the paper by

ro et al. (2008).  Another way of validating regression models is to
andomly permute the response values and create a distribution of
ross validated prediction estimates. The predictive performance
f the “true” model should stand out compared with the null dis-
ribution from models with permuted responses.

. Applications

Table 1 compiles some recent pharmaceutical applications
here advanced characterization techniques are used in combi-
ation with multivariate data analysis methods.

.1. Vibrational spectroscopy

IR, NIR and Raman spectroscopy have been used for many appli-
ations, such as qualitative and quantitative analysis of different
harmaceutical formulations, and monitoring of pharmaceuti-
al processes. Quantification of active pharmaceutical ingredients
API) and excipients is a typical example.

NIR and Raman enable rapid and non-destructive measure-
ents that can be performed remotely through optical fibres and

o sampling is thus needed. Due to these factors these spectral
echniques are particularly useful for process analysis and can be
mplemented in PAT. In addition, spectroscopic analysis of solids

ay  offer probing of solid state properties such as crystallinity and
ample density, parameters that are entirely lost by chromatogra-
hy and other wet-chemistry methods (Johansson et al., 2002).

Spectroscopic techniques are usually employed in combination
ith multivariate data analysis methods. Usually a PLS calibra-

ion model is first built relating measured spectra to a reference
echnique. Validated model can then be used for on-line monitor-
ng of the process and predicting for example API concentration
n real-time. Identification of raw materials or intermediate prod-
cts is also of interest in the pharmaceutical industry. Spectra from
ew compounds are compared with spectra of already approved
ompounds in e.g. NIR libraries and are then classified similar or dis-
imilar. Either unsupervised (PCA) or supervised (SIMCA, PLS-DA)
lassification methods can be utilized for this purpose.

A recent example of the successful use of NIR in PAT is the devel-
pment, validation and transfer of a NIR method to determine the
nd point of a fluidized drying process by Peinado et al. (2011).
amples were taken from batches that were produced at full com-

ercial scale and moisture content was measured with in-line NIR

robe throughout the drying process. PLS regression (calibration
odel and validation) was employed as the multivariate method

nd robustness assessment was performed using PCA. The devel-
ped NIR method is currently implemented as a primary in-line
al of Pharmaceutics 417 (2011) 280– 290 287

method for controlling the drying end point in real-time for com-
mercial production of solid oral-dose medicine. This has resulted in
approx. 10% savings in energy efficiency and operational time for
this particular process.

Extensive reviews on combined NIR spectroscopy and mul-
tivariate data analysis in pharmaceutical technology have been
published (Luypaert et al., 2007; Reich, 2005; Roggo et al., 2007).
Aaltonen et al. (2008) discussed topics related to spectroscopic
analysis of pharmaceutical solids. One of the highlighted areas in
this review was  the importance of multivariate methods when
using spectroscopic techniques. The use of Raman spectroscopy
for quantitative analysis of pharmaceutical solids is reviewed in
Strachan et al. (2007).

3.2. Imaging

Imaging techniques utilized in pharmaceutical applications vary
from digital images (monochromatic or colour) to chemical imag-
ing using spectroscopic techniques. Spectroscopic (hyperspectral)
imaging techniques, in particular IR, NIR and Raman imaging, have
become an attractive alternative because of instrumental develop-
ment. A recent review on hyperspectral imaging of solid dosage
forms was  published by Amigo (2010).

Several multivariate exploratory and resolution methods can
be applied to image analysis techniques to provide information
about pure compounds in a sample (de Juan et al., 2004). Multi-
variate curve resolution (MCR) comprises a family of chemometric
methods intended for the analysis of complex multicomponent
systems and data produced with e.g. hyphenated instruments
like GC/MS and LC/MS. These methods are not discussed in this
paper and a good overview of the progress of MCR  methods
can be found elsewhere (de Juan and Tauler, 2006). Multiway
analysis (N-way methods) is another family of multivariate meth-
ods often applied in image analysis and hyphenated instruments
(Bro, 2006; Smilde et al., 2004). Different spectroscopic imaging
techniques in pharmaceutical applications and the data analysis
methods suitable for image analysis are reviewed by Gendrin et al.
(2008).

3.3. Other characterization techniques

Other characterization techniques applied in pharmaceutics are
for example, gas and liquid chromatography (GC and LC), mass
spectrometry (MS), laser and X-ray diffractometry, and acoustic
emission. In addition to laser diffractometry, also sieve analysis,
spatial filtering technique and imaging are employed for particle
size distribution measurement.

Hagsten et al. (2008) investigated 131 API batches to identify
sources of batch to batch variation in the full scale processabil-
ity by extrusion. Combination of low-pressure compression with
particle size measurement provided a suitable tool for powder
characterization. Particle size distributions were measured by laser
diffractometry.

If the measured variables were evaluated separately none of
them explained the batch to batch variation. Multivariate anal-
ysis by PCA revealed grouping of the batches according to their
quality and the variables mainly contributing to this clustering
could be detected. The amount of added granulation liquid reflected
the investigated variation, and the batch quality was found out to
be influenced by particle size, specific surface areas and packing
behaviour.
A new strategy for revealing and ranking the bioactive com-
ponents in natural products from chromatographic profiling was
presented by Chau et al. (2009).  The approach is based on PLS/TP
analysis of the chromatographic profiles and utilizes selectivity
ratios (SR) for the detection and ranking of the bioactive com-
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onents. This study represents a new way to analyze complex
ulticomponent samples from herbal formulations.

. Conclusions

This tutorial review has given an introduction to multivariate
ata analysis methods commonly used in pharmaceutics in com-
ination with advanced characterization techniques. As shown by
everal applications published in this area these methods are nowa-
ays widely used in the pharmaceutical sciences and have a central
ole in PAT initiatives in the industry.

Since there is usually no trivial answer to a given data-analytical
roblem, the analyst should be able to recognise what is relevant
nd suitable for the given purpose. A recent paper by Kjeldahl and
ro (2010) discusses a number of common misunderstandings and
itfalls in practical multivariate data analysis that one should be
ware of. Among these are for example, selection of relevant sam-
les and variables, diagnosis and interpretation of the models, and
he use of software packages. Pitfalls when using PLS regression in
IR applications are also discussed by Xiang et al. (2009).
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